Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Geroscience ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727872

ABSTRACT

Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.

2.
Geroscience ; 46(3): 3105-3122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38182857

ABSTRACT

Hair graying, also known as canities or achromotrichia, is a natural phenomenon associated with aging and is influenced by external factors such as stress, environmental toxicants, and radiation exposure. Understanding the mechanisms underlying hair graying is an ideal approach for developing interventions to prevent or reverse age-related changes in regenerative tissues. Hair graying induced by ionizing radiation (γ-rays or X-rays) has emerged as a valuable experimental model to investigate the molecular pathways involved in this process. In this review, we examine the existing evidence on radiation-induced hair graying, with a particular focus on the potential role of radiation-induced cellular senescence. We explore the current understanding of hair graying in aging, delve into the underlying mechanisms, and highlight the unique advantages of using ionizing-irradiation-induced hair graying as a research model. By elucidating the molecular pathways involved, we aim to deepen our understanding of hair graying and potentially identify novel therapeutic targets to address this age-related phenotypic change.


Subject(s)
Cellular Senescence , Hair Color , Mice , Animals , Oxidative Stress , Hair , Models, Theoretical , DNA Damage
3.
Microcirculation ; 31(2): e12840, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38082450

ABSTRACT

INTRODUCTION: Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS: Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS: In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS: These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.


Subject(s)
Blood-Brain Barrier , Insulin-Like Growth Factor I , Animals , Mice , Blood-Brain Barrier/pathology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Insulin-Like Peptides , Endothelial Cells/metabolism , Aging/pathology , Brain/blood supply , Phenotype , Endothelium , Cellular Senescence
4.
Geroscience ; 46(1): 21-37, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044400

ABSTRACT

Emerging evidence from both clinical and preclinical studies underscores the role of aging in potentiating the detrimental effects of hypertension on cerebral microhemorrhages (CMHs, or cerebral microbleeds). CMHs progressively impair neuronal function and contribute to the development of vascular cognitive impairment and dementia. There is growing evidence showing accumulation of senescent cells within the cerebral microvasculature during aging, which detrimentally affects cerebromicrovascular function and overall brain health. We postulated that this build-up of senescent cells renders the aged cerebral microvasculature more vulnerable, and consequently, more susceptible to CMHs. To investigate the role of cellular senescence in CMHs' pathogenesis, we subjected aged mice, both with and without pre-treatment with the senolytic agent ABT263/Navitoclax, and young control mice to hypertension via angiotensin-II and L-NAME administration. The aged cohort exhibited a markedly earlier onset, heightened incidence, and exacerbated neurological consequences of CMHs compared to their younger counterparts. This was evidenced through neurological examinations, gait analysis, and histological assessments of CMHs in brain sections. Notably, the senolytic pre-treatment wielded considerable cerebromicrovascular protection, effectively delaying the onset, mitigating the incidence, and diminishing the severity of CMHs. These findings hint at the potential of senolytic interventions as a viable therapeutic avenue to preempt or alleviate the consequences of CMHs linked to aging, by counteracting the deleterious effects of senescence on brain microvasculature.


Subject(s)
Aniline Compounds , Hypertension , Senotherapeutics , Sulfonamides , Humans , Mice , Animals , Aged , Aging/pathology , Cellular Senescence
5.
Geroscience ; 46(1): 531-541, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37953375

ABSTRACT

Whole brain irradiation (WBI), also known as whole brain radiation therapy (WBRT), is a well-established treatment for multiple brain metastases and as a preventive measure to reduce the risk of recurrence after surgical removal of a cerebral metastasis. However, WBI has been found to lead to a gradual decline in neurocognitive function in approximately 50% of patients who survive the treatment, significantly impacting their overall quality of life. Recent preclinical investigations have shed light on the underlying mechanisms of this adverse effect, revealing a complex cerebrovascular injury that involves the induction of cellular senescence in various components of the neurovascular unit, including endothelial cells. The emergence of cellular senescence following WBI has been implicated in the disruption of the blood-brain barrier and impairment of neurovascular coupling responses following irradiation. Building upon these findings, the present study aims to test the hypothesis that WBI-induced endothelial injury promotes endothelial dysfunction, which mimics the aging phenotype. To investigate this hypothesis, we employed a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks) on young mice. Both the WBI-treated and control mice were fitted with a cranial window, enabling the assessment of microvascular endothelial function. In order to evaluate the endothelium-dependent, NO-mediated cerebral blood flow (CBF) responses, we topically administered acetylcholine and ATP, and measured the resulting changes using laser Doppler flowmetry. We found that the increases in regional CBF induced by acetylcholine and ATP were significantly diminished in mice subjected to WBI. These findings provide additional preclinical evidence supporting the notion that WBI induces dysfunction in cerebrovascular endothelial cells, which in turn likely contributes to the detrimental long-term effects of the treatment. This endothelial dysfunction resembles an accelerated aging phenotype in the cerebrovascular system and is likely causally linked to the development of cognitive impairment. By integrating these findings with our previous results, we have deepened our understanding of the lasting consequences of WBI. Moreover, our study underscores the critical role of cerebromicrovascular health in safeguarding cognitive function over the long term. This enhanced understanding highlights the importance of prioritizing cerebromicrovascular health in the context of preserving cognitive abilities.


Subject(s)
Acetylcholine , Endothelial Cells , Humans , Animals , Mice , Quality of Life , Brain , Adenosine Triphosphate
6.
Geroscience ; 46(1): 327-347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123890

ABSTRACT

Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.


Subject(s)
Neurovascular Coupling , Mice , Animals , Neurovascular Coupling/physiology , Rejuvenation , Mice, Inbred C57BL , Aging/physiology , Parabiosis
7.
Nutrients ; 15(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37960316

ABSTRACT

As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Hyperhomocysteinemia , Humans , Methionine , Hyperhomocysteinemia/complications , Brain , Cerebrovascular Circulation , Diet/adverse effects , Alzheimer Disease/etiology
8.
Geroscience ; 45(5): 2983-3002, 2023 10.
Article in English | MEDLINE | ID: mdl-37642933

ABSTRACT

Whole brain irradiation (WBI), a commonly employed therapy for multiple brain metastases and as a prophylactic measure after cerebral metastasis resection, is associated with a progressive decline in neurocognitive function, significantly impacting the quality of life for approximately half of the surviving patients. Recent preclinical investigations have shed light on the multifaceted cerebrovascular injury mechanisms underlying this side effect of WBI. In this study, we aimed to test the hypothesis that WBI induces endothelial senescence, contributing to chronic disruption of the blood-brain barrier (BBB) and microvascular rarefaction. To accomplish this, we utilized transgenic p16-3MR mice, which enable the identification and selective elimination of senescent cells. These mice were subjected to a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks), and cranial windows were applied to both WBI-treated and control mice. Quantitative assessment of BBB permeability and capillary density was performed using two-photon microscopy at the 6-month post-irradiation time point. The presence of senescent microvascular endothelial cells was assessed by imaging flow cytometry, immunolabeling, and single-cell RNA-sequencing (scRNA-seq). WBI induced endothelial senescence, which associated with chronic BBB disruption and a trend for decreased microvascular density in the mouse cortex. In order to investigate the cause-and-effect relationship between WBI-induced senescence and microvascular injury, senescent cells were selectively removed from animals subjected to WBI treatment using Navitoclax/ABT263, a well-known senolytic drug. This intervention was carried out at the 3-month post-WBI time point. In WBI-treated mice, Navitoclax/ABT263 effectively eliminated senescent endothelial cells, which was associated with decreased BBB permeability and a trend for increased cortical capillarization. Our findings provide additional preclinical evidence that senolytic treatment approaches may be developed for prevention of the side effects of WBI.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Humans , Mice , Animals , Quality of Life , Senotherapeutics , Brain/blood supply , Cellular Senescence
9.
Geroscience ; 45(5): 2851-2872, 2023 10.
Article in English | MEDLINE | ID: mdl-37338779

ABSTRACT

Cerebral microhemorrhages (CMHs, microbleeds), a manifestation of age-related cerebral small vessel disease, contribute to the pathogenesis of cognitive decline and dementia in older adults. Histological studies have revealed that CMHs exhibit distinct morphologies, which may be attributed to differences in intravascular pressure and the size of the vessels of origin. Our study aimed to establish a direct relationship between the size/morphology of CMHs and the size/anatomy of the microvessel of origin. To achieve this goal, we adapted and optimized intravital two-photon microscopy-based imaging methods to monitor the development of CMHs in mice equipped with a chronic cranial window upon high-energy laser light-induced photodisruption of a targeted cortical arteriole, capillary, or venule. We assessed the time course of extravasation of fluorescently labeled blood and determined the morphology and size/volume of the induced CMHs. Our findings reveal striking similarities between the bleed morphologies observed in hypertension-induced CMHs in models of aging and those originating from different targeted vessels via multiphoton laser ablation. Arteriolar bleeds, which are larger (> 100 µm) and more widely dispersed, are distinguished from venular bleeds, which are smaller and exhibit a distinct diffuse morphology. Capillary bleeds are circular and smaller (< 10 µm) in size. Our study supports the concept that CMHs can occur at any location in the vascular tree, and that each type of vessel produces microbleeds with a distinct morphology. Development of CMHs resulted in immediate constriction of capillaries, likely due to pericyte activation and constriction of precapillary arterioles. Additionally, tissue displacement observed in association with arteriolar CMHs suggests that they can affect an area with a radius of ~ 50 µm to ~ 100 µm, creating an area at risk for ischemia. Longitudinal imaging of CMHs allowed us to visualize reactive astrocytosis and bleed resolution during a 30-day period. Our study provides new insights into the development and morphology of CMHs, highlighting the potential clinical implications of differentiating between the types of vessels involved in the pathogenesis of CMHs. This information may help in the development of targeted interventions aimed at reducing the risk of cerebral small vessel disease-related cognitive decline and dementia in older adults.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , Mice , Animals , Arterioles/diagnostic imaging , Venules , Capillaries/diagnostic imaging , Microscopy , Cerebral Hemorrhage/etiology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Dementia/complications
10.
Front Endocrinol (Lausanne) ; 14: 1087053, 2023.
Article in English | MEDLINE | ID: mdl-36755922

ABSTRACT

Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Humans , Aged , Insulin-Like Growth Factor I/metabolism , Brain/metabolism , Cognitive Dysfunction/etiology , Cerebrovascular Circulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...